EE 527 MICROFABRICATION

Lecture 11 Tai-Chang Chen University of Washington

CVD/CVD SAFETY ISSUES

- CVD often uses hazardous gases
 - poisonous
 - pyrophoric / flammable / explosive
 - corrosive
 - dangerous combinations: e.g. SiH₄ + halogens
- Gases often produce solid products when in contact with air (small leaks): particles (contamination, clogging of gas lines and meters)

© UWEE TC Chen

Winter 2014

 1_{1}

CVD/COMMON GASES FOR CVD

Gas	Formula	Hazard	Flammable limit	Exposure limit
			(vol% in air)	(ppm)
Ammonia	NH ₃	toxic, corrosive	16-25	25
Argon	Ar			
Arsine	AsH ₃	toxic		0.05
Diborane	B_2H_6	toxic, flammable	1-98	0.1
Dichlorosilane	SiH ₂ Cl ₂	flammable, toxic	4-99	5
Hydrogen	H ₂	flammable	4-74	
Hydrogen chloride	HCI	corrosive, toxic		5
Nitrogen	N ₂			
Nitrogen oxide	N ₂ O	oxidizer		
Oxygen	0 ₂	oxidizer		
Phosphine	PH_3	toxic, flammable	pyrophoric	0.3
Silane	SiH ₄	flammable, toxic	pyrophoric	0.5

PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION (PECVD)

- Reaction similar to that of CVD except driven at a much higher energy state.
- High energy state allows reactions unattainable through standard thermal excitation.
- High energy states are achieved by ionizing the gas born reactant at low pressures with RF or microwave electric fields.
- The chemical reaction from the highly excited reactants result in thin film deposition or etching.

© UWEE TC Chen

PECVD/BASIC STEPS OF PECVD

- 1. Electron impact ionization and dissociation
- 2. Diffusion and transport of species to the wafer surface
- 3. Adsorption/chemisorption of species on the wafer surface sites
- 4. Surface diffusion and dissociation
- 5. Reaction of adsorbed species with substrate
- 6. Desorption of reaction products

© UWEE TC Chen

Winter 2014

PECVD/PECVD PROCESS FLOW

PECVD DEPOSITION CHAMBER

PECVD

http://www.dowcorning.com/content/etronics/etronicschem /etronics_newcvd_tutorial3.asp

Plasma Enhanced CVD

- parallel plate electrodes with glow discharge
- samples on grounded electrode
- heated ground plate
- gas introduced from center, outer edge, or shower head
- contamination by loosely adhering deposits
- less uniform

© UWEE TC Chen

CVD/CVD SUMMARY

Process	Advantage	Disadvantage
APCVD	 Low cost equipment Fast deposition (no pump down)	Poor step coverageParticle contaminationHigh temperature process
LPCVD	High film purity & uniformalityConformal step coverage	 Low deposition rate High temperature process
PECVD	 Low temperature process Fast deposition Controllable film stress High etch rates possible 	 Particle contamination Chemical contamination Substrate damage High cost equipment

© UWEE TC Chen

Winter 2014

ATOMIC LAYER DEPOSITION

• ALD deposits one atomic layer at a time, offering ultimate thickness control.

The process of ALD: ALD works in pulsed mode,

- A pulse of the first precursor, typically an organometallic compound.
 - Chemical bonds are formed between precursor gas molecules and the surface atoms.
- A purging nitrogen gas removes the non-reacted precursors and the gaseous reaction by-products.
- A pulse of the second precursor
 - Chemical bonds are formed between the second precursor gas molecules and the first precursor gas molecules.
- Purge or evacuation of the reaction chamber.

© UWEE TC Chen

Winter 2014

ALD/APPLICATIONS

- ALD is studied as a potential technique to deposit high-k (high dielectric) gate oxides in advanced CMOS.
 - In high-k gate oxides, where the control of ultra thin films is essential.

 $HfCl_4 (ad) + 2 H_2O (ad) \rightarrow HfO_2(s) + 4 HCl (g)$

• Practical deposition rates are around 0.1 nm/cycle, and overall rates are typically a few nanometers per minute.

© UWEE TC Chen

Winter 2014